Humboldt Waterkeeper
  • About Us
    • Our Mission
    • Waterkeeper Alliance
  • Humboldt Bay
    • Geography
    • Wildlife
    • Bay Issues
    • Photo Gallery
  • Programs
    • Toxics Initiative
    • Water Quality
    • Bay Tours
    • Community Outreach
  • Get Involved
    • Report Pollution
    • Speak Out
    • Volunteer
    • Donate
    • Membership
    • Stay Informed
  • Contact Us
  • News
    • Latest
    • Press

News

Redwoods and Climate Change

Details
Marie E. Antoine and Stephen C. Sillett, Cal Poly Humboldt - published in Forest and River News
Latest
Created: 14 April 2023
This article was published in the Spring 2023 Forest and River News - click HERE to see fiull article with accompanying photographs.
Coast redwood (Sequoia sempervirens) has a narrow and highly fragmented distribution along 460 miles of western North America. Although they occupy only a small land area, primary (unlogged, old-growth) redwood forests are globally renowned. Extreme resistance to fire, fungi, and herbivores allows redwoods to become the tallest trees on Earth and live more than 2,000 years. These same qualities make excellent lumber, and redwoods have been heavily exploited by logging. Less than 5% of primary redwood forests remain (176 square miles), and mature (> 100 years old) secondary forests are even scarcer (42 square miles) because forests are logged repeatedly. Non-timber values like long-term carbon sequestration and biodiversity provisioning warrant closer consideration in this era of environmental disruption.

How Might Redwoods Fare in a Changing Climate, and What Can We Do To Help?

To answer these questions, we visited 45 locations (32 primary and 13 secondary forests) from California’s Monterey County to Oregon’s Curry County. We climbed 235 trees, measuring each one from base to top and extracting thin core samples. Redwoods, like other temperate-zone trees, store their growth histories in annual rings, and cores are a non-destructive way to read a tree’s story. We took core samples from trunks at regular height intervals because sampling only near ground level tends to underestimate growth rates (more biomass production occurs within crowns as trees enlarge with age). Overall, we sampled 1.2 million annual rings, which were crossdated by Cal Poly Humboldt dendrochronologist Allyson Carroll. These data were combined with intensive measurements and allometric equations to reconstruct tree size and productivity through time. Redwood performance was modeled as functions of tree attributes, landscape position, and climate. Funding for this work came from Kenneth L. Fisher (Chair in Redwood Forest Ecology at Cal Poly Humboldt) and the Save the Redwoods League (Redwoods and Climate Change Initiative, Phase 3). Our rangewide analysis was recently published in Forest Ecology and Management—526 (2022) 120573. What we learned is cause for both concern and hope. 

Which Climatic Variables Affect Redwood Productivity?

Redwood habitat suitability is generally dependent on soil water replenished through rain and fog drip as well as water absorption through foliage. The redwood range spans over 6° of latitude. Rain and summer fog are highest in the north and lowest in the south. Trees north of 40° are least drought-sensitive, making similar biomass in dry and wet years, while trees south of 37° are most sensitive. The extravagantly wet start to 2023 sets an unlikely stage for talking about drought, yet the climatic variable most related to redwood growth is a drought index encompassing both water availability and temperature variability.
Drought sensitivity has recently been increasing throughout the redwood range. Southern trees experience problems earlier during multi-year droughts, and they recover more slowly from extreme drought than northern trees. Across the range, smaller and younger trees in secondary forests experience more growth suppression during extreme drought than larger and older trees in primary forests. In late 2022, when our analysis was published, the whole redwood range was once again in the midst of a multi-year drought. Abundant rain returned to the region in early 2023 with excessive precipitation and extreme winds presenting an entirely different challenge to redwoods.
Regardless of precipitation, the redwood range will experience progressive drying due to global warming. Temperatures are highest in the south, lowest in the north, and rising steadily, especially at night. The drying power of air—vapor pressure deficit (VPD)—increases exponentially with temperature. High daytime VPD means trees need to close their leaf stomata earlier in the day to prevent damaging water loss. This limits photosynthesis, but such “source limitation” is mitigated by rising atmospheric carbon dioxide (CO2) levels. In today’s enriched atmosphere (CO2 currently 419 parts per million, was 317 in 1960), trees can partially close leaf stomata to reduce water loss and still absorb plenty of CO2 for photosynthesis. Nevertheless, heatwaves with extreme daytime temperatures can lead to treetop dieback, and another temperature effect directly inhibits radial growth of redwoods.
Growing season minimum temperatures are increasing as nights become unusually warm. High nocturnal VPD creates problems in the layer of dividing cells where new wood is made (the cambium). Dry air at night prevents sufficient turgor pressure to develop in the cambium for cell division and enlargement. With this “sink limitation” too few cells are produced to make new wood, so sugar produced by leaves via photosynthesis must be stored or used elsewhere. Where? Roots and mycorrhizal fungi are a definite possibility, though the belowground biology of redwoods remains largely unexplored. Another major sink is indicated by the name of the tree itself—the wood is red because of heartwood chemicals that resist fungal decay. Heartwood fungicide is redwood’s superpower.
Trees strike a balance between making new tissues and protecting them from corruption. We express this balance with the metric “growth efficiency”—the amount of biomass produced annually per unit leaf mass. Sink limitations due to warmer, drier nights reduce growth efficiency but may increase wood quality, because excess sugar is used to make fungicide, not tree rings. Coastal fog helps to lower VPD, and nighttime fog is one of the best predictors of redwood growth efficiency. During multi-year hotter droughts, redwoods in forests lacking sufficient nighttime fog will see the most growth inhibition, but again, their heartwood may become more durable. This could be a silver lining of climate change, though it is more complicated because young and old redwoods aren’t equivalent.
A bigger tree makes more wood annually than a smaller tree because it has more leaves, and the older a redwood gets the greater its annual investment in fungicide. Heartwood production and fungicide investment are both higher in primary than secondary forests throughout the range. This means secondary forests are generally less effective than primary forests at long-term carbon sequestration, and the capacity of regenerating forests to sequester carbon in durable biomass may be overestimated. Considering 95% of current redwood forests are relatively young, the priority is clear—we need more big old redwoods on the landscape.

Elder Trees

Managing redwoods as short-rotation crops squanders the potential of a species that can live for two millennia. Long-term carbon sequestration is one issue, and biodiversity is another. These two non-timber values are interconnected because decay-resistant heartwood creates long-lasting substrates for epiphytes (plants that grow on plants without parasitism), including giant fern mats and ericaceous shrubs in the wettest part of the redwood range. Vascular epiphytes like ferns and shrubs represent an endpoint in epiphyte community development. Tree structural complexity promotes biodiversity—the largest and oldest trees host the bulk of arboreal life in addition to being carbon-sequestration champions. We’ve gotten to know redwoods very well over the past few decades and have come to think of exceptional individuals as elder trees. 
We choose the word “elder” with intention both figurative and literal. The word applies figuratively because respect for elders is a cherished value in most cultural traditions worldwide. The literal sense of the word is demonstrated by the data—of 235 study trees only 34 hosted vascular epiphytes, and their average age was over 1,100 years. The biggest, gnarliest, epiphyte-laden trees are precious individuals that deserve all the reverence implied by the term “elder.” With over 95% of redwood forests having been logged at least once, elder trees are now rare on the landscape. This reality becomes starker with each major fire, landslide, or flood event that causes attrition in the last remaining primary forests.

What Can We Do to Help?

We can literally grow hope for the future by designating potential elder trees (PETs). Imagine an approach where some of the most robust individual trees in a secondary forest are chosen to become part of the long-term inventory. These may or may not be trees with the largest trunk diameter. PET selection should also consider crown structure, where trees with the biggest branches and complexity such as limbs and reiterated trunks show exceptional promise. The PET acronym is apt because it conveys the sense of caring we associate with our beloved animal companions. In the case of these special trees, if we tend and nurture them, they will thrive.
Work is underway to establish objective criteria for PET selection. Once PETs are designated, future forest management can be designed to promote their health and vigor, including thinning of crowded tree neighborhoods. Over time, a decreasing number of enlarging trees will produce increasingly durable biomass with some minimum number of PETs gaining full stature and becoming elder trees. With the PET strategy, wood production and non-timber values are not mutually exclusive. While the PET idea is not limited to redwoods, the extreme size and longevity of this species make it ideal for this tree-based approach to forest management.

Variability of Redwoods

The variability of redwood—from gallery forests of California’s Santa Lucia Mountains receiving less than 30 inches of annual precipitation to rainforests in southwestern Oregon receiving more than 80 inches, from foggy forests near the immediate coast to isolated canyons 30 miles from the ocean with little marine influence, and from lowland alluvial forests where redwood contributes over 99% of aboveground biomass to coastal montane forests dominated by other species—makes establishing realistic restoration targets across its range difficult.

Where Do We Start?

The PET approach has maximum impact in the northern part of the redwood range because of ecologically important vascular epiphytes. While it’s generally true that crown structural complexity promotes arboreal biodiversity, well-developed epiphyte communities including ferns, shrubs, and canopy soil occur only in elder trees of the wettest and foggiest forests. The northern range also has the most land area occupied by secondary forests with unrealized potential for long-term carbon sequestration. Young trees north of 40° have the highest growth efficiency and lowest investment in heartwood defense. In other words, northern redwoods grow efficiently, but unless they are allowed to grow old, they produce relatively small amounts of low-quality heartwood with little fungicide. Promoting redwood PETs in the northern range will maximize future contributions of long-term carbon sequestration and arboreal biodiversity. Ongoing research shows that development of arboreal biodiversity can be accelerated by transplanting ferns into PET crowns. Even in places where climate doesn’t allow vascular epiphytes, PETs promise benefits such as long-term carbon sequestration, improved fire resistance, and the inspirational value of elder trees.

In an Uncertain Future

The loss of so many redwoods in recent winter storms highlights the urgency of restoring big old trees to the landscape beyond the few remaining primary forests in parks and reserves. From floods and landslides to fire and drought, extreme events are becoming more frequent. A thriving PET population rangewide would give redwoods their best chance to contribute non-timber values in perpetuity. Realistically, these iconic trees might experience top dieback during extreme daytime temperatures and produce less wood because of higher nighttime temperatures. Hotter droughts and severe wildfires might even cause contraction of the species range near its range margins. However, with thick fire-resistant bark and an amazing capacity for clonal reproduction via sprouting, few tree species are so well equipped to persist in an uncertain future. Our actions now will determine the quality of forests to be enjoyed by generations to come.
The full article, Stephen C. Sillett et al. Rangewide climatic sensitivities and non-timber values of tall Sequoia sempervirens forests. Forest Ecology and Management 526 (2022) 120573, can be found at:
https://www.sciencedirect.com/science/article/pii/S0378112722005679
For more information: This email address is being protected from spambots. You need JavaScript enabled to view it. or This email address is being protected from spambots. You need JavaScript enabled to view it.

52 years after capture, captive orca may return to Pacific

Details
Freida Frisaro and Gene Johnson, Associated Press
Latest
Created: 06 April 2023

More than 50 years after the orca known as Lolita was captured for public display, plans are in place to return her from the Miami Seaquarium to her home waters in the Pacific Northwest, where a nearly century-old, endangered killer whale believed to be her mother still swims.

Lolita, also known as Tokitae, was about 4 years old when she was captured in Puget Sound in summer 1970, during a time of deadly orca roundups. She spent decades performing for paying crowds before falling ill.

Last year the Miami Seaquarium announced it would no longer stage shows with her, under an agreement with federal regulators. Lolita — now 57 years old and 5,000 pounds (2,267 kilograms) — currently lives in a tank that measures 80 feet by 35 feet (24 meters by 11 meters) and is 20 feet (6 meters) deep.

The orca believed to be her mother, called Ocean Sun, continues to swim free with other members of their clan — known as L pod — and is estimated to be more than 90 years old. That has given advocates of her release optimism that Tokitae could still maybe have a long life in the wild.

“It’s a step toward restoring our natural environment, fixing what we’ve messed up with exploitation and development,” said Howard Garrett, president of the board of the advocacy group Orca Network, based on Washington state’s Whidbey Island. “I think she’ll be excited and relieved to be home — it’s her old neighborhood.”

Read More

It’s not just oceans that are rising. Groundwater is, too.

Details
Julia Kane, Lina Tran, & Diana Kruzman - Grist
Latest
Created: 02 April 2023

As subterranean water inches higher, so do threats to air and water.

Oceans do not stop where the sea meets the shore. Along the coasts, saltwater creeps through porous soil and rock, creating an underground saltwater table that can extend miles inland.
Many Americans are familiar with sea-level rise. As we crank up the planet’s thermostat, the melting of glaciers and ice sheets and the thermal expansion of seawater mean the oceans are rising and intruding farther and farther inland — both on top of the land and underneath it.
Few regions expect an inundation from below, explained Kristina Hill, a professor at the University of California, Berkeley, who studies rising groundwater in urban coastal areas. “They think that building a levee is going to protect them from rising seawater. But, of course, a levee doesn’t affect much about the way that groundwater rises behind it.”
One of many concerning possibilities is that rising groundwater will mobilize contaminants that have been lurking in the soil for years, left behind by industrial and military sites, and allow them to spread, unnoticed, beneath our feet. 
This slow-moving crisis is popping up in communities across the U.S., but there are some common steps that can be implemented anywhere to help stem the spread of contaminants through climate-driven groundwater rise. Hill said one of the most important for government agencies and municipalities to take is simply more monitoring — in particular, at “maximum groundwater moments,” such as a few days after a heavy rain or at a high tide. Currently, sampling tends to be so infrequent that it doesn’t catch the movement of the contamination. 
“There are ways that we could be sampling and trying to catch the maximum risk, instead of kind of smoothing it all over with sampling that isn’t related to rain events or tide events,” Hill said. “Ideally, we’d help local people be involved in that sampling so that they know what’s happening in their own neighborhoods.”
Understanding, though, has to be paired with action. Along with taking broader steps to address climate change and its impacts, agencies need to ensure polluters clean up toxic sites, rather than just capping them and hoping for the best. 
Read More

How California’s Elephant Seals Made a Remarkable Recovery

Details
Soumya Karlamangla, New York Times
Latest
Created: 01 April 2023

Hunted nearly to extinction, northern elephant seals, native to the waters off the West Coast, now number more than 175,000.

“They were thought to be extinct,” said Adam Ratner, associate director of conservation education at the Sausalito-based Marine Mammal Center, an animal hospital that cares for wild elephant seals. “We basically had a second chance with this species — and what’s amazing about marine mammals and other wildlife is how resilient they are.”
Northern elephant seals, which can weigh up to 5,000 pounds and are named for the males’ distinctive trunk-like noses, live in the eastern Pacific Ocean. They spend most of their time diving for fish and squid in the deep seas between Alaska and Mexico but come to land to breed and molt. 

The seals were hunted so much for their blubber, coveted by humans as a source of fuel, that between 1884 and 1892, not a single northern elephant seal was seen anywhere in the world, according to the National Park Service.
Then a small colony of elephant seals was found on Guadalupe Island off the coast of Baja California in Mexico. After laws were enacted in Mexico and the United States banning hunting of elephant seals, that colony — estimated to have dwindled to fewer than 100 animals — was able to keep reproducing, and the population rebounded.
Elephant seals started popping up in places they had long abandoned or had never been sighted before, as they sought more beach space for their annual breeding. Elephant seals recolonized the Channel Islands in California following federal protection in the 1930s, and were spotted at Año Nuevo, along the wind-swept San Mateo coast, in 1955. In later decades, they spread to Point Reyes in Marin County, the Big Sur Coast and farther south toward San Luis Obispo.
But there are new, growing problems linked to climate change.
When atmospheric rivers slammed California in January, an estimated 100 newborn seals at Point Reyes National Seashore died, as king tides overwhelmed the beaches. Pups don’t learn how to swim until they are a few months old, and many were too young when the storms hit, according to Sarah Codde, a marine ecologist at the park.
Rising tides in general threaten the habitats of these animals, many of which breed on narrow beaches backed by steep cliffs, with little space to retreat from the water. After the January storms, many pregnant seals at Point Reyes moved to previously uninhabited beaches in the park, Codde said, but there are only so many easily accessible places to relocate to.
Still, the elephant seal population is, for the most part, booming. There are now believed to be 175,000 of the seals worldwide, and they have even begun to occupy breeding grounds outside of what’s considered their historic range, including Humboldt County.
Read More

3,000 gallons of untreated sewage spilled in Eureka

Details
Sage Alexander, Eureka Times-Standard
Latest
Created: 31 March 2023
A lift station malfunction caused 3,000 gallons of sewage to be released into a storm drain near Waterfront Drive and L Street on Tuesday. The sewage was untreated, according to Eureka Public Works Director Brian Gerving.
A malfunction in the Halvorsen Park lift station caused the overflow.
“In this case, there are a few factors that came together that made the overflow happen,” said Gerving.
During storms, sewer volume often increases. This is caused when runoff infiltrates older sewer lines with weak joints. Sump pumps and gutters sometimes also push stormwater into sewer lines, which is a problem that can cause sewage overflows.
A power outage from a wind storm also impacted the lift station, which Gerving says does not have a backup generator.
Read More

More Articles …

  1. Elk River Restoration: Making Things Right
  2. Arcata leaders hear sea level rise update
  3. California’s Aging Electrical Infrastructure Presents Hurdle for Offshore Wind Development on the North Coast
  4. Humboldt County supervisors approve a slate of offshore wind actions

Latest

Press

Page 27 of 184
  • Start
  • Prev
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • Next
  • End

Advanced Search

Current Projects

  • Mercury in Local Fish & Shellfish
  • Nordic Aquafarms
  • Offshore Wind Energy
  • Sea Level Rise
  • 101 Corridor
  • Billboards on the Bay
  • Dredging
  • Advocacy in Action
  • Our Supporters
Report A Spill
California Coastkeeper
Waterkeeper Alliance
Copyright © 2025 Humboldt Waterkeeper. All Rights Reserved.